Type II singularities on complete non-compact Yamabe flow
نویسندگان
چکیده
منابع مشابه
ON TYPE-II SINGULARITIES IN RICCI FLOW ON Rn+1
For n+1 ≥ 3, we construct complete solutions to Ricci flow on R which encounter global singularities at a finite time T . The singularities are forming arbitrarily slowly with the curvature blowing up arbitrarily fast at the rate (T − t)−2λ for λ ≥ 1. Near the origin, blow-ups of such a solution converge uniformly to the Bryant soliton. Near spatial infinity, blow-ups of such a solution converg...
متن کاملOn Type-ii Singularities in Ricci Flow on Rn
In each dimension N ≥ 3 and for each real number λ ≥ 1, we construct a family of complete rotationally symmetric solutions to Ricci flow on R which encounter a global singularity at a finite time T . The singularity forms arbitrarily slowly with the curvature blowing up arbitrarily fast at the rate (T − t)−(λ+1). Near the origin, blow-ups of such a solution converge uniformly to the Bryant soli...
متن کاملCurvature Tensor under the Complete Non-compact Ricci Flow
We prove that for a solution (M, g(t)), t ∈ [0, T ), where T < ∞, to the Ricci flow on a complete non-compact Riemannian manifold with the Ricci curvature tensor uniformly bounded by some constant C on M × [0, T ), the curvature tensor stays uniformly bounded on M × [0, T ).
متن کاملOn Type-I singularities in Ricci flow
We define several notions of singular set for Type-I Ricci flows and show that they all coincide. In order to do this, we prove that blow-ups around singular points converge to nontrivial gradient shrinking solitons, thus extending work of Naber [15]. As a by-product we conclude that the volume of a finite-volume singular set vanishes at the singular time. We also define a notion of density for...
متن کاملConformal Curvature Flows on Compact Manifold of Negative Yamabe Constant
Abstract. We study some conformal curvature flows related to prescribed curvature problems on a smooth compact Riemannian manifold (M, g0) with or without boundary, which is of negative (generalized) Yamabe constant, including scalar curvature flow and conformal mean curvature flow. Using such flows, we show that there exists a unique conformal metric of g0 such that its scalar curvature in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal für die reine und angewandte Mathematik (Crelles Journal)
سال: 2020
ISSN: 0075-4102,1435-5345
DOI: 10.1515/crelle-2020-0032